Simulation of Network Attacks on SCADA Systems

Rohan Chabukswar*, Bruno Sindpoli*, Gabor Karsaif, Annarita Giani*, Himanshu Neema! and Andrew Davis’
*Carnegie Mellon University
Vanderbilt University
J:University of California Berkeley

Abstract—Network security is a major issue affecting SCADA
systems designed and deployed in the last decade. Simulation of
network attacks on a SCADA system presents certain challenges,
since even a simple SCADA system is composed of models in
several domains and simulation environments. Here we demon-
strate the use of C2WindTunnel to simulate a plant and its
controller, and the Ethernet network that connects them, in
different simulation environments. We also simulate DDOS-like
attacks on a few of the routers to observe and analyze the effects
of a network attack on such a system.

I. INTRODUCTION

Supervisory Control And Data Acquisition (SCADA) sys-
tems are computer-based monitoring tools that are used to
manage and control critical infrastructure functions in real
time, like gas utilities, power plants, chemical plants, traffic
control systems, etc. A typical SCADA system consists of
a SCADA Master which provides overall monitoring and
control for the system, local process controllers called Remote
Terminal Units (RTUs), sensors and actuators and a network
which provides the communication between the Master and
the RTUs.

A. Security of SCADA Systems

SCADA systems are designed to have long life spans,
usually in decades. The SCADA systems currently installed
and used were designed at a time when security issues were
not paramount, which is not the case today. Furthermore,
SCADA systems are now connected to the Internet for remote
monitoring and control making the systems susceptible to
network security problems which arise through a connection
to a public network.

Despite these evident security risks, SCADA systems are
cumbersome to upgrade for several reasons. Firstly, adding
security features often implies a large downtime, which is
not desirable in systems like power plants and traffic control.
Secondly, SCADA devices with embedded codes would need
to be completely replaced to add new security protocols.
Lastly, the networks used in a SCADA system are usually
customized for that system and cannot be generalized.

Security of legacy SCADA systems and design of future
systems both thus rely heavily on the assessment and rectifi-
cation of security vulnerabilities of SCADA implementations
in realistic settings.

B. Simulation of SCADA Systems

In a SCADA system it is essential to model and simulate
communication networks in order to study mission critical

situations such as network failures or attacks. Even a simple
SCADA system is composed of several units in various
domains like dynamic systems, networks and physical en-
vironments, and each of these units can be modeled using
a variety of available simulators and/or emulators. An ex-
ample system could include simulating controller and plant
dynamics in Simulink or Matlab, network architecture and
behavior in a network simulator like OMNeT++, etc. An
adequate simulation of such a system necessitates the use of
an underlying software infrastructure that connects and relates
the heterogeneous simulators in a logically and temporally
coherent framework.

II. C2WINDTUNNEL

One infrastructure suitable for such an application is the
Command and Control WindTunnel ([3]). The C2WindTunnel
is an integrated, graphical, multi-model simulation environ-
ment for the experimental evaluation of congruence between
organizational and technical architectures in large-scale C2
systems. It enables various simulation engines to interact and
transmit data to and from one another and log and analyze the
real time simulation results.

The C2WindTunnel framework uses the discrete event
model of computation as the common semantic framework
for the precise integration of an extensible range of simulation
engines. Each simulation model, when incorporated into the
overall simulation environment of C2WindTunnel, requires in-
tegration on two levels: the API level and the interaction level.
API level integration provides basic services such as message
passing, and shared object management, whereas interaction
level integration addresses the issues of synchronization and
coordination. C2WindTunnel offers a solution for multi-model
simulation by decomposing the problem into model integra-
tion and experiment integration tasks. It facilitates the rapid
development of integration models and use of these models
throughout the lifecycle of the simulated environment. An
integration model defines all interactions between federated
models and captures other design intent, such as simulation
engine-specific parameters and deployment information. This
information is leveraged to streamline and automate significant
portions of the simulation lifecycle. The integration modeling
language combined with various sophisticated generation tools
provides a robust environment for users to rapidly design
and synthesize complex, heterogeneous command and control
simulations.

A. High Level Architecture (HLA)

C2WindTunnel is based on the High-Level Architecture
(HLA) IEEE standard 1.3 ([2], [4] and [5]) initially designed
by Department of Defense (DoD) to ensure interoperabil-
ity and reusability of models and simulation components.
Reusability implies individual simulation models can be em-
ployed in different simulation scenarios, while interoperability
implies an ability to incorporate simulations on different types
of distributed computing platforms, with real-time operation.

A complex simulation can be considered as a hierarchy
of components with increasing levels of aggregation. At the
lowest level is the model of a system component implemented
in software to produce a simulation, referred to as a federate.
Several such federates form a part of an HLA compliant
simulation, called a federation. There are three components
of an HLA:

1) HLA rules to ensure proper interaction among federates
and to delineate the respective responsibilities.

2) Object Model Template (OMT) to prescribe format and
syntax for recording and communicating information.

3) Interface specification to define Run Time Infrastructure
services and interfaces and federate callback functions.

B. Run-Time Infrastructure (RTI)

The software implementation of HLA is called a Run-Time
Infrastructure (RTI). There are several commercial and open-
source RTIs available in the market, some of which have been
verified by the US Defense Modeling and Simulation Office.

The RTI is basically a collection of software that provides
a set of commonly required services, described by the HLA
Interface Specification, to multiple simulation systems. Apart
from federation and object management, the RTI handles
time management and co-ordinates the exchange of interacting
events and data among the federates in a system.

1) Time Management: The time management services pro-
vided by the RTI ensure advancement of the simulation time
in an orderly fashion among all the federates. Initially, the
federate manager uses HLA-specified synchronization points
to guarantee that all federates are ready to proceed with the
simulation. Only when each federate has reported readiness to
proceed with the simulation, does the federate manager allow
all federates to commence the simulation.

2) Event and Data Interaction: A publish and subscribe
mechanism is used by the HLA to manage the distribution of
messages between the federates in a federation. Each federate
defines to the federation what data is to be published for
each update or event. Each federate declares to the federation
which updates and interactions it is interested in receiving by
subscribing to those messages.

C. C2WindTunnel Modeling Environment

C2Wind Tunnel uses a custom developed domain-specific
modeling language (DSML) for the definition of integration
models and the design details for the simulation environment.
A simulation environment is composed of multiple federates
each of which includes a simulation model, the engine upon

which it executes, and some amount of specialized glue code
to integrate the engine with the simulation bus. Both the engine
configuration and the integration code needed for each federate
is highly dependent upon the role the federate plays in the
environment as well as the type of simulation engine being
utilized. While manually developing the glue code is possible,
by leveraging the integration model, C2WindTunnel is able to
synthesize all of the code, greatly reducing errors and effort.
A suite of tools called model interpreters, integrated directly
with the DSML automatically generates engine configurations,
glue code, as well as scripts to automate simulation execution
and data collection. The integration model DSML combined
with the generation tools provides a robust environment for
users to rapidly define complex, heterogeneous command and
control simulations.

The Generic Modeling Environment is the foundation
for the C2WindTunnel environment. GME is a meta-
programmable model-integrated computing toolkit that sup-
ports the creation of rich domain-specific modeling and pro-
gram synthesis environments. Configuration is accomplished
through meta models, expressed as UML class diagrams, spec-
ifying the modeling paradigm of the application domain. Meta
models characterize the abstract syntax of the domain-specific
modeling language, defining which objects are permissible in
the language and how they compose. The meta model is a
schema or data model for all of the possible models that can
be expressed by a language.

Figure 1 shows the structure of a simulation undertaken
using C2WindTunnel.

III. SIMULATION

In this section, we demonstrate the simulation of net-
work security attacks on a SCADA system simulated using
C2WindTunnel.

The SCADA system chosen was a simplified version of
the famous Tennessee Eastman Control Challenge Problem,
proposed by N. Lawrence Ricker ([1]). The original challenge
problem requires co-ordination of three unit operations, with
41 measured output variables (with added measurement noise)
and 12 manipulated variables. The control challenge presented
by this case study is quite complex, but a simplified version
was proposed by Ricker in 1993.

The process schematic is shown in Figure 2. It consists of
an isothermal fixed volume reactor with a combined separation
system, in which a single irreversible reaction occurs:

A+C—D.

The reactants A and C are non-condensible, and the product D
is a non-volatile liquid. The reaction rate depends only on the
partial pressures of A and C. There are two controlled feeds
to the reactor chamber. Feed 1 consists of the reactants A and
C, and traces of an inert gas B. Feed 2 consists of pure A,
which is used to compensate for disturbances in the partial
pressures of A and C in feed 1. The solubilities of A, B and
C in D are negligible, so the vapor phase can be assumed to
consist only of A, B and C, and the liquid, pure D. Thus, the

- “Virtual” Components
Experiment
Specification .
And Model Integration Layer
Configuration Controller Network Other
Models Models Models
Models 1
Run-time
Simulink OMNeT++ Other
Federate Federate Federates
Instrumentation Layer
Simulation Integration Platform
Simulation Data Distribution
And Communication Middleware
Distributed Simulation Platform
Fig. 1. C2WindTunnel Simulation Architecture

—— > Purge

R

Vapor

Feed 1 —

Feed 2 —

/_\/\/
Y

—— Product

Fig. 2. Process Schematic, taken from [1]

only disturbance variables are the mole fractions of A, B and
Cin feed 1.

Isothermal conditions are maintained using independent
controls. The product flow rate is adjusted using a proportional
feedback controller which responds to variations in the liquid
inventory. The purge rate depends on the pressure in the vessel
and the position of the purge control valve.

Measured outputs include the four flow rates, pressure,
liquid holdup volume, and the fractions of A, B and C in
the purge flow. This composition measurement offers the pure
time delay as in the original TE problem, as the simulated
chromatograph operates on a 6 minute cycle.

The control problem is to maintain the product flow rate
at a specified value by manipulating flows of feed and purge
streams, and the liquid holdup volume. The restrictions come
from the physical aspects of the plant: the operating pressure
must be kept below the shutdown limit of 3 MPa, and the flow
rates saturate at some point. A higher level control objective

is to minimize operating costs, which are a function of the
purge losses of A and C.

Tables I, II, III and IV list the different variables of the
system.

In his paper, Ricker derives a linear time-invariant dynamic
model of the plant at the base-case state. The LTI model
matches the impulse response of the nonlinear plant well. The
robust model-predictive controller is one of several proposed
in [1]. It uses only four out of the ten available sensor outputs,
and controls all four manipulated variables. The variables
which necessarily must be monitored include the production
rate (F}), the pressure (P) and the liquid inventory (V7).
Failure to do so might upset other variables and profitability,
or will allow violation of bounds on pressure and liquid holdup
volume. The fourth variable chosen is the amount of reactant
A in the purge flow (y43), though amounts of any of the other
two components would perform just as well. The final structure
of the simplified model as derived in [1] is:

Fy g 0 0 gus R
P g21 0 g3 O U
= = Gu = . 1
YA3 0 g3 0 O u3 M
Vi 0 0 0 gu Uy

The individual transfer functions are given below (the unit

TABLE I
STATE VARIABLES (TAKEN FROM [1])

Variable Nominal Value Description Symbol | Units
1 44.49999958429348 | Molar holdup of A Ny kmol
T2 13.53296996509594 | Molar holdup of B Np kmol
x3 36.64788062995841 | Molar holdup of C N¢ kmol
T4 110.0 Molar holdup of D Np kmol
x5 60.95327313484253 | Feed 1 valve position X1 %
g 25.02232231706676 | Feed 2 valve position X2 %
z7 39.25777017606444 | Purge valve position X3 %
8 47.03024823457651 | Product valve position X4 %
TABLE 1T
MANIPULATED VARIABLES (TAKEN FROM [1])
Variable Nominal Value Purpose Range
Ul 60.95327313484253 | Changes feed 1 valve position | 0 — 100%
u2 25.02232231706676 | Changes feed 2 valve position | 0 — 100%
u3 39.25777017606444 | Changes purge valve position 0 — 100%
U4 44.17670682730923 | Liquid inventory set point 0 - 100%
TABLE III
OUTPUT VARIABLES (TAKEN FROM [1])
Variable | Nominal Value | Description Symbol Units Range
Y1 201.43 Feed 1 flow measurement 1 kmol/hr 0 — 330.46
Y2 5.62 Feed 2 flow measurement Fy kmol/hr 0 -2246
Y3 7.05 Purge flow measurement F3 kmol/hr Complicated
Y4 100.00 Product flow measurement Fy kmol/hr Complicated
Y5 2700.00 Pressure P kPa < 3000
Y6 44.18 Liquid inventory \%3 % of maximum | 0 — 100
y7 47.00 Amount of A in purge YA3 mol % 0 - 100
Y8 14.29 Amount of B in purge YB3 mol % 0 - 100
Y9 38.71 Amount of C in purge Yyo3 mol % 0 - 100
Y10 0.2415 Instantaneous cost C $/kmol >0
TABLE IV
DISTURBANCE VARIABLES (TAKEN FROM [1])
Variable | Nominal Value | Description Units
YA1 0.485 Mole fraction of A in feed 1 —
YB1 0.005 Mole fraction of B in feed 1 —
of s is assumed to be hr'): to oversight. It was estimated using the method described in
1.7 the paper.)
M= 0mEs+ 1 @ . . ,
45 (5.667s + 1) Rlcker provides a FORTRAN simulator of the plapt model.
go1 = 5 , (3) This was converted to C code and used as a S-Function block
2'551 g; 10121552; 1 to create a Simulink model of the plant.
928 = 2.582 +10.255 + 1’ @ The plant has a very high time constant, as is characteristic
I S (5) of chemical plants. To properly study the effects of a network
932 = 105 +1 ’ attack, we need a system which can respond to disturbances
014 = —3.4s (6) during network attacks of duration in minutes. To this end,
0152 +1.1s+1’ the time constants for the plant were multiplied by 60, so
Gaa = 1) that changes which took hours now take the same number of

s+1°
(The transfer function go3 is not given in [1], probably due

minutes to occur. The transfer functions were then suitably
modified to convert the unit of time to seconds. The final

equations used were:

0.02833

e it 8
gi1 455 + 17 ()
45 (3405 + 1)
p— 9
921 = 90005 + 6165 + 1° ©)
—900s — 11.25
- 10
923 = 900052 + 6155 + 17 (10)
15 e (11
932 = G00s +1°
—3.4s
- o 12
914 = 36052 + 665 + 17 (12
1
- 13
944 = 605 + 1 (3)

Using Matlab, a minimal state space model of the system
was constructed, which was then discretized to run at one-
hundredth of a second. This is the system assumed in order
to implement the controller as a Discrete State Space System
block in a separate Simulink model. The A, B, C' and D
matrices for the controller were then calculated by using a
Kalman state estimator and linear quadratic state feedback
regulator system.

To complete the system, an Ethernet network was added
for communication between the plant and its controller. The
network was designed to be a realistic implementation of one
in a chemical plant, where a single router would collect data
from plant sensors which are physically close to it (and to
each other). Similarly, it would send manipulation data to the
valves which are physically close to it. There are four routers
which route data from different sensors and to different control
inputs. There is a three-level hierarchy in the network map,
with a master controller distributing data to and collecting
data from other routers at the plant site. Two relay routers
are employed between the master router at the plant site and
the router that communicates to the controller. To keep the
network model simple, no redundancy was employed. The
network model was simulated in OMNeT++, a generic discrete
event simulation package using INET network protocols ([6]).
The schematic of the network model is given in Figure 3.

A. Model Integration

The integration of models in different simulation environ-
ments has been described in more detail in [3].

1) OMNeT++: NetworkSim, a network simulator based on
OMNeT++, provides a set of high-level communication proto-
cols while maintaining full network stack simulation internally.
NetworkSim utilizes network models built using OMNeT++.
It translates messages from the RTI into appropriate network
actions and vice versa, and injects these messages onto the
correct simulated network node. This mechanism isolates the
simulated network traffic from the general RTI traffic. Each
OMNeT++ model deployed onto NetworkSim must have some
code synthesized for integration with the RTI. When simulated
via NetworkSim, some of the connected nodes in OMNeT++
become end-points, responsible for passing messages between
the RTI and the OMNeT++ engine. The code that implements

the communication between the RTI and these end nodes must
be generated by the integration software.

A GME-based interpreter traverses the C2WT integration
model and generates the C++ code needed for end-point nodes
within an OMNeT++ model. For each federate, the integration
model provides information about which interactions may be
sent or received and which objects attributes may be published
or updated. The interpreter understands these relationships and
synthesizes code for each end-point in an OMNeT++ federate.
The generated code builds upon the OMNeT++ API and is
compiled directly into NetworkSim. Apart from the glue code,
evolution of the OMNeT++ internal simulation clock must also
be synchronized with the RTI. As a part of HLA compliance,
NetworkSim includes a reusable class that extends the basic
OMNeT++ scheduler. The function getNextEvent() is
called by OMNeT++ to determine the next event, originating
either internally or externally. If the timestamp on the next
message places it outside of the window of time granted
by the RTI, then a time advance is requested. An internal
dispatch mechanism routes all RTT interactions to the appro-
priate OMNeT++ protocol module which interprets them and
can schedule new internal OMNeT++ messages. A similar
mechanism interprets and routes OMNeT++ messages bound
for external dispatch into the RTI. Using these mechanisms
both the evolution of time and message passing within an
OMNeT++ federate is tightly coordinated via the RTI with
the federation.

2) Simulink: Like in the integration of the OMNeT++ sim-
ulation engine, all of the engine-specific glue code is generated
based on the overarching integration model. The GME-based
model interpreter generates code that, in conjunction with sev-
eral reusable Java generic classes, is used to directly integrate
any Simulink model with a C2WT federation. The generic
classes provide all of the fundamental RTI integration require-
ments: providing interfaces for converting between Simulink
types and RTI types, encapsulating interfacing with the RTI for
initializing the federate, synchronizing the Simulink engine’s
simulation clock, and managing any publish-and-subscribe
relationships with other federates.

Within any given Simulink model the user must insert an S-
function block for each interaction to which the model either
publishes or subscribes via which blocks that the Simulink
engine can interact with the rest of the federation. The modeler
specifies whether the block either publishes or subscribes
an interaction by instantiating the corresponding sender or
receiver S-function from those that were generated from the
integration model. The modeler must also specify which
interaction the S-function block should call by passing the
name of the interaction via a string parameter to the block.
The naming convention of the .m files and of the parameters
is standardized and easily derived from the primary C2WT
model.

Once the S-function blocks have been incorporated and their
values set, no further manual steps are typically necessary to
prepare the model to be integrated. Some effort has to be
spent to properly order the signals entering and exiting the S-

Yy

Controller

u

Controller
Router

]

Relay
Router

]

Relay
Router

Master
Router

Reactor
Router

Feed

sl B |

Purge
Router

Product

Router

Router

Ys Us Y6

Y
Uy u2 Y1 Y2 Ys Yr Ys Yo U3 Y4 Y10
Plant

Fig. 3.

function blocks so that they correspond to the attribute order-
ing of the corresponding RTI interaction. The key mechanism
for synchronizing the clock progression of the Simulink model
with that of the RTI is the basic time-progression model for
S-function blocks. During its execution, the Simulink engine
consults each block in a model about when it can generate
an output. With all S-function blocks, code must be supplied
to respond to this request from the engine. The synthesized
integration code in an S-function block uses this method to
synchronize the model with the RTI and allow simulation time
within Simulink to progress only when the RTI allows it to
proceed. Until the RTT allows federation time to progress, we
do not return from the method call within the S-function block,
thus not allowing the Simulink engine to progress. We keep
the Simulink engine step-size low (typically 0.1 seconds) to
minimize any event timing errors due to the passing of input
and output events between the Simulink model and the HLA.
For incoming events, the glue code uses a polling scheme at
every time step to check if the federate has received an input
from the remainder of the federation. Very small step-sizes
in any Simulink model can lead to a significant slowdown
in simulation speed. In the context of the C2WT, possible
performance penalties due to having small step-sizes must be
weighed against minimizing timing errors due to overly large
time-steps.

Network Map

B. Attacks

Several DDOS-like attacks are simulated on the SCADA
system, targeting various routers of the network. In each such
attack, the target is saturated with external communication
requests from a large number of zombie nodes so that it
cannot handle the legitimate traffic of the system, or at least,
is rendered so slow in handling the traffic, that it is effec-
tively unavailable for transfer of legitimate data. The targets,
durations and the number of attacks in the simulation are
specified beforehand. In these simulations, the controller, feed
and product routers are attacked. In each case, the simulation
was run for 150 seconds, and attack started at the 30-second
mark and continued till the 60-second mark.

IV. OBSERVATIONS

When one of the routers is under a full-fledged DDOS
attack, the network is essentially broken at that point. The con-
troller will be rendered blind to sensors from which the router
collects data. The plant will also be rendered unresponsive to
such controller commands as are handled by that router. This
will result in a loss of the regulatory function of the controller,
which can potentially cause a variety of damage to the plant,
from an unwanted change in the operating cost and production
rate, to physical damage of plant equipment.

In case the target is one of the routers which handle all of the
data (controller, master or relay routers), such an attack causes
a complete loss of communication between the plant and

2780

2770

2760

2750

2740

2730

Reactor Pressure (kPa)

2720

2710

2700

2690
0

Time (s)

(a) Pressure

Product Flow Rate (kmol/min)
@
8

100 L—Lf
0 50 100 150
Time (s)

(b) Product Flow Rate

Operating Cost (§/kmol)

Time (s)
(c) Operating Cost
Fig. 4. Attack on Controller Router, from 30s through 60s

controller. The plant undergoes a severe change of state when
the attack begins, from which it recovers and resumes normal
operation. Such an attack is the first to be simulated. The
effects can be observed in the change in pressure, production
rate and operating cost over time, especially during the attack
(Figures 4a, 4b and 4c). In case other routers are targeted,
the controller will generate outputs based on the sensors
outputs it has, and will try to control the inputs which are
not unresponsive. These effect can be observed by monitoring
the operating cost during the simulation.

The next simulation involves attacking the feed router,
which blocks the feed 1 and feed 2 flow measurement sensors
(which are not used by the controller), and the valve 1 and
valve 2 controllers (uq1 and us). The controller is thus not blind

2760

2750

2740

2730

2720

Reactor Pressure (kPa)

2710

2700

2690 » L
0 50 100 150

Time (s)

(a) Pressure

Product Flow Rate (kmol/min)
@
8

50 100 150
Time (s)

(b) Product Flow Rate

0.2

Operating Cost ($/kmol)
°
>

50 100 150
Time (s)

(c) Operating Cost

Fig. 5. Attack on Feed Router, from 30s through 60s

to any of the required sensors, but its regulation function could
be hampered by it not being able to control the two valves.
The effects can be observed by monitoring the same sensor
outputs over time (Figures 5a, 5b and 5c). We see that due
to the robust nature of the controller, an attack on the feed
router has no effect on the state of the plant, which continues
to operate normally despite the attack.

The last simulation involves attacking the product router,
which blocks several sensors, the only required one of which
being the amount of A in purge (y7), and the purge valve
controller (uz). The controller is thus blind to one of the
required sensors, and it is not able to control the purge valve.
The effects of this attack are different than the previous two
simulations. The plant goes into an uncontrolled state for

2760

2750

2740

2730

2720

Reactor Pressure (kPa)

2710

2700

2690
0

Time (s)

(a) Pressure

Product Flow Rate (kmol/min)
@
8

100 L»/—————————»/4""""""*4~——<——————~——————————r44444—

Time (s)

(b) Product Flow Rate

0.24 |
0.22 4

02

Operating Cost (§/kmol)
°
>

Time (s)
(c) Operating Cost
Fig. 6. Attack on Purge Router, from 30s through 60s

the duration of the attack, from which it can recover and
resume normal operation only after the attack has ceased. The
effects can be observed by observing the usual output variables
(Figures 6a, 6b and 6c).

V. CONCLUSION

A DDOS-like attack was simulated on a plant and con-
troller system and the effects of attacks on different routers
were observed. While the effects of the total communication
disruption might have been estimated, the effects of the other
two attacks are harder to predict. The same attack on different

routers causes no change in one case and severe problems in
another. If the system were more complicated, then obtaining

the effects would require intensive analytical computations,
or indeed, could very well be intractable. In such a case,

a simulation is the best way to estimate the effects, and to
implement and compare different network configurations and
redundancies.

The chemical plant was thus a proof-of-concept implemen-
tation of a simulation system composed of models in differ-
ent domains and environments. The use of C2WindTunnel
facilitated the interaction and data transfer between the en-
vironments, and in setting up the attacks and monitoring the
response.

VI. FUTURE WORK

The results of the simulation can be used to analyze the
current network and controller, and develop more robust con-
trol algorithms and improve the network, for example by using
redundancies. The SCADA system itself might be expanded
to employ a Fault Detection and Isolation and/or an Intrusion
Detection System.

The attack that was simulated is one attack on the availabil-
ity of a system. Future work involves observing the effect of
other common network security attacks on integrity and confi-
dentiality of the data as well, like eavesdropping, misdirection
and spoofing.

Another direction for future work involves simulation of
systems including hardware-in-the-loop.

ACKNOWLEDGMENT

This work was supported in part by TRUST (Team
for Research in Ubiquitous Secure Technology), which re-
ceives support from the National Science Foundation (NSF
award number CCF-0424422) and the following organizations:
AFOSR (#FA9550-06-1-0244), BT, Cisco, DoCoMo USA
Labs, EADS, ESCHER, HP, IBM, iCAST, Intel, Microsoft,
ORNL, Pirelli, Qualcomm, Sun, Symantec, TCS, Telecom
Italia and United Technologies.

REFERENCES

[1]1 N. Lawrence Ricker, Model predictive control of a continuous, nonlinear,
two-phase reactor. Journal of Process Control, Volume 3, Issue 2, May
1993, Pages 109-123.

[2] J. O. Calvin, R. Weatherly, An introduction to the high level architecture
(HLA) runtime infrastructure (RTI). Proceedings of the 14th Workshop
on Standards for the Interoperability of Defence Simulations, Orlando,
FL, March 1996, pp. 705-715.

[3] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, G. Karsai, Rapid
Synthesis of HLA-Based Heterogeneous Simulation: A Model-Based In-
tegration Approach. in review for Simulation.

[4] R. Crosbie, J. Zenor, High Level
http://www.ecst.csuchico.edu/~hla/.

[5] HLA standard - IEEE standard for modeling and simulation (M&S) high-
level architecture (HLA) — framework and rules. 1EEE Std. 1516-2000,
pp.i-22, 2000

[6] OMNeT++ Simulation Package.

Architecture.

http://www.omnetpp.org/

