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ABSTRACT
The project explores preprocessing of images to facilitate
tracing of microtubule filaments in three dimensional im-
ages accrued from fluorescence microscopy. The next step
of the project is tracing of the filaments themselves, which
is hoped to be completed shortly.

1. INTRODUCTION

Microtubules are filamentous cytoskeletal structures com-
posed of tubulin protein subunits. These subunits can add
on, or dissociate from, the tubulin polymer rapidly, making
them highly dynamic. Microtubules are critically involved
in many essential cellular functions, such as chromosome
segregation at mitosis and intracellular cargo transport.
Motivation. Microtubules are generally studied using

three dimensional fluorescence microscopy. The output of
such a system is a 3D image of the microtubules, blurred
due to factors like the lenses, the imaging device, sampling
and digitization, and the finite size of the microtubules them-
selves. This blurring makes it difficult for automated anal-
ysis of the microtubules. Manual tracing of the tubules is
a very inconvenient option, due to large size of images and
visualization problems due to the 3D nature of the images.

Th aim of the project is to automatically trace each mi-
crotubule filament in the 3D microscope image. The traced
image will be used to estimate the statistics of the filaments,
like number of filaments, average length, distribution of length.
The traces in the image should be as close as possible to the
actual filaments for the statistics to have appropriate confi-
dence intervals.
Related Work. Very little work has been done in the

area till date. Sargin et al [1] have presented a microtubule
body tracing algorithm that addresses the clutter without im-
posing directional constraints. Others have also presented
algorithms that work in different cases. Most of the previ-
ous work has been done in two dimensions.
Organization of the Paper. This paper describes the

different approaches that were implemented to thin the im-
age. The actual tracing could not be completed due to time
constraints, however the implementation is only a short step
away from the results obtained at the end of the project. The

input image is a simulation of the microscopy image, with-
out noise. The point spread function is also given. Initial tri-
als were also run on images of a smaller size mainly due to
the time complexity of the algorithms involved. The smaller
images were also less complex, contaning one or two fila-
ments, which facilitated the development of the algorithms
and choosing of specific parameters. This paper first de-
scribes the analysis on images contining one filament, then
two intersecting filaments and then the simulation image.
Due to difference in the basic characteristics of the images,
the approaches used were different in each case.

2. BACKGROUND

The microtubule filaments originate from a common center
and grow outwards. This results in the density of the fila-
ments being less towards the periphery of the image than the
center. The mechanism of the formation of these filaments
dictates that the filaments grow in a straight line unless an
obstacle exists, like cell organelles. Thus while tracing the
image, a minimum curvature constraint can be imposed to
prevent wrong tracing of the tubules. This is especially true
at points of intersection of two microtubules. On the bright
side, due to the nature of fluorescence microscopy, points
of intersection of microtubules glow twice as bright as any
other point on a single microtubule. Thus, intensity infor-
mation has to be preserved to isolate the problematic points
and tread carefully around them while performing the trac-
ing.

3. THEORY

Deblurring. The input image is noise free, as are the smaller
images. However, they still need to be deconvolved with
the PSF so that the deconvolved image is positive, and the
noise is reduced, as the actual images will have noise. For
such a system, the noise is usually Poisson in nature, so the
Richardson-Lucy deconvolution algorithm can be used. It,
of course, has to be modified to 3D, the implementation of
which already exists in Matlab. Direction of Extension.
However, after deconvolution, we are not guaranteed a thin
image. That is, even after deconvolution, the thickness of



the individual filament can be more than 1 pixel. To get rid
of this, we need to thin the image.

While thinning as well as tracing filaments, it is essen-
tial to know the direction that the filament at that point has
grown from, and the direction it is growing in. In two di-
mensions, the Hessian is often used to determine this. This
concept can be extended to n-dimensional space very easily.

The Hessian is a matrix of second order derivatives. If
I (x, y) is a 2D image, the HessianH is given as
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For a continuous, well-behaved image (as is the case al-
ways), the second derivatives have the property that ∂2I

∂xi∂xj
=

∂2I
∂xj∂xi

. Thus the Hessian is symmetric. The eigensystem
of the Hessian of the image at a particular point gives infor-
mation about the direction of the tubule at that point. The
direction of extension of the filament is given by the eigen-
vector of the Hessian corresponding to the eigenvalue of the
minimum magnitude. As the eigenvalues are all real, the
singular value decomposition can be used instead, as it in-
herently orders the (positive) singular values in the order of
decreasing magnitude. Thus we only need to pick the last
eigenvector (and its negative) to find the directions of exten-
sion of the filament at that point.

For discrete images as obtained from a computer, the
Hessian is replaced by its finite-difference equivalent. Since
the image is now not continuous, to preserve the symme-
try of the Hessian (for real eigenvalues), the finite differ-
ence implemented assumes ∂I

∂xi
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x1=X1,x2=X2,...,xn=Xn

=

I(x1,x2,...,xi+1,...,xn)−I(x1,x2,...,xi−1,...,xn)
2 . Using this def-

inition, the property of the partial derivatives is preserved,
and the Hessian remains symmetric. Thinning. The thin-
ning of the image is achieved by amethod called non-maximal
separation, best known as one of the steps in the Canny edge
detection algorithm. This method basically checks if a point
is a local maximum along directions perpendicular to the
direction of extension, and puts it to zero if it isn’t. This
results in thinning of the filament. The first step in this al-
gorithm is to quantize the (bidirectional) direction vector to
one of 13 possible (bidirectional) vectors which can be con-
structed in a 3 × 3 pixel cube. This is done by taking the
inner product of the direction vector with each of the 13

vectors, and taking the one which results the maximum ab-
solute value of the inner product. The inner product of this
quantized vector with all the 13 vectors is again taken, and
the 2 directions which are perpendicular to it are taken (they
give a value of 0 for the inner product). The 4 pixels in these
directions are taken, and the current pixel value is checked
against each of them. If it is the maximum, its value is pre-
served. If it is not the maximum, the pixel value is set to
zero.

This thinning also has the ability to function on the orig-
inal image giving equivalent results. However this is true in
the simulated image because of absence of noise. In the
presense of noise, the deconvolution will indeed have to be
carrued out.

Non-maximal supression is the slowest of all the steps,
as it has to go through all the pixels of the image. Thresh-
olding. It can be noticed that the intensity values are pre-
served along the filament length rather than set to a prede-
termined value. This is done to ensure that the intensity
data along the length of the filament can be used in future
to detect intersections. However, the intensity still has to be
quantized.

It is a fair assumption that atmost two microtubules can
intersect at a point. The probability of three microtubules
meeting at one point is considerably low, enough to disre-
gard it completely, especially near the periphery. Thus the
intensity value of a pixel can be 0 (for a background pixel),
1 (for a pixel on the filament) or 2 (for the pixel at the in-
tersection of two filaments). The deconvolution operation,
however does not result in values which are close to these
values. A thresholding step has to be implemented.

Hysteresis thresholding, another step from the Canny al-
gorithm, is used as the basic idea here. For edge detection,
where we want the output to be either 0 or 1, 2 threshold-
ing levels are set. Intensities lower than the lower level are
set to zero, those higher than the higher level are set to 1.
The pixels which fall between the two thresholds are set to
1, if atleast one of their 8-neighbors is a definite 1. This
hysteresis also tries to complete broken edges.

In this case, we need 3 different intensity levels, and cor-
respondingly 4 different threshold levels — anything below
level 1 is 0, anything above level 4 is 2, anything between
levels 2 and 3 is 1. Anything between levels 1 and 2 is 1 if
one of its 26-neighbors is above level 2, 0 otherwise. As we
are expecting only a few pixels with intensity 2, surrounded
by atleast 2 pixels of intensity 1, anything between levels 3
and 4 is 2 if atleast 2 of its 26-neighbors are 1. The actual
threshold parameters are fixed by trial and error.



4. RESULTS

4.1. Single Filament

The original image, Figure 1, is a curve in xyz space. It
is convolved with the PSF to get the input image, Figure 2.
The input image is put through Richardson-Lucy deconvo-
lution to get the deconvolved image Figure 3. This step is
just performed to check the performance of the deconvo-
lution, because since the image is noise-free, nonmaximal
separation can be applied directly on the input image to
get the thinned image, Figure 4. Hysteresis Thresholding
is then applied to the thinned image to get the final image,
Figure 5. It can be seen that the image reconstruction is
fairly accurate after all the steps have been applied. The
pixel count in the final image is quite close to that in the
original image.

Fig. 1. Single Filament — Original Image

Fig. 2. Single Filament — Input Image

4.2. Intersecting Filaments

The original image, Figure 6, consists of two intersecting
curves in the xyz space. The points of intersection have an

Fig. 3. Single Filament — Deconvolved Image

Fig. 4. Single Filament — Thinned Image

Fig. 5. Single Filament — Thresholded Image



intensity value of two. Similar steps as the single filament
case are applied on to the input image Figure 7 to gener-
ate the final image, Figure 10. The intermediate steps are
shown in Figures 8 and 9. The output matches very well to
the input image, apart from slight deviations. The charac-
teristics which was required to be preserved, the pixels with
intensity value 2, match perfectly.

Fig. 6. Intersecting Filaments — Original Image

Fig. 7. Intersecting Filaments — Input Image

4.3. Simulation Image

The simulation output is shown in figure 11. TheRichardson-
Lucy deconvolution results in a clean image, Figure 12.
Non-maximal supression gives the output of Figure 13, which
is not as good as the ones from simpler images, but when
used with the deconvolved image, can give good results.
The output is a very clean image, in which tracing of the
filaments should be an easy task. The procedure proposed
to accomplish this is described later.

Fig. 8. Intersecting Filaments — Deconvolved Image

Fig. 9. Intersecting Filaments — Thinned Image

Fig. 10. Intersecting Filaments — Thresholded Image



Fig. 11. Simulation — Input Image

Fig. 12. Simulation — Deconvolved Image

Fig. 13. Simulation — Thinned Image

5. DISCUSSION

The preprocessing of the image appears to be very success-
ful in all three cases. The non-maximal suppression works
well on input images without noise, but the results are not
so good with deconvolved images. However, since the de-
convolution step is essential to remove noise, an additional
step of convolving the deconvolved image with the same
or different PSF should give an noise-free blurred image,
on which the non-maximal supression has been observed to
work. This PSF is slightly more elongated in the z-direction
than the xy-plane, which will interfere with the eigenvec-
tors, and thus the finding of the direction of extension. Thus
another PSF, having the same spread in x-, y- and z- direc-
tions will be preferred.

6. FUTUREWORK— TRACING THE FILAMENTS

Tracing the filaments is but a short step after the prepro-
cessing is complete. The key idea used is the same as that
of connected components labeling. The algorithm for con-
nected components labeling interates Equation 3 interatively.

Xk+1 = (Xk ⊕ B) ∩ A. (3)

where ⊕ denotes dilation, A is the original image, and B
is the structuring element, usually the set of 4-neighbors or
8-neighbors in two dimensions. The initialization X0 is an
empty image except for one pixel of the current component.
This image is dilated interatively, but the intersection with
A ensures that only those pixels which are present in the
original image are retained in the component.

To label the next component, the current component is
subtracted from the original image, and the algorithm is run
again.

It is easy to see the application of this algorithm to trace
filaments. Apart from the structuring element being the set
of 26-neighbors instead of 4- or 8-neighbors, the dilation
operation has to be made conditional. More specifically, the
image should be dilated only in the direction of extension of
the filament, not isotropically. This will only be needed near
the intersection of two filaments, and these areas are already
pinpointed in the preprocessed image. Thus, the algorithm
is a short extension of the current connected components
labeling procedures.

The initial pixels can be found out by searching inwards
from the periphery.

7. CONCLUSION

The preprocessing of the image is one of the most challeng-
ing aspects of automatization of this task. In this case, the
algorithm after pre-processing is a short one, and easy to im-
plement. Due to constraints on time, this procedure could



not be implemented. Future work will involve tracing the
filaments and comparing them to the input image, and com-
puting the statistics of the filaments. After implementing
on simulated images, the algorithm can be tested on actual
images obtained from fluorescence microscopy.
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