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Abstract— Energy management systems (EMS) are used to
control energy usage in buildings and campuses, by employing
technologies such as supervisory control and data acquisition
(SCADA) and building management systems (BMS), in
order to provide reliable energy supply and maximise
user comfort while minimising energy usage. Historically,
EMS systems were installed when potential security threats
were only physical. Nowadays, EMS systems are connected
to the building network and as a result directly to the
outside world. This extends the attack surface to potential
sophisticated cyber-attacks, which adversely impact EMS
operation, resulting in service interruption and downstream
financial implications. Currently, the security systems that
detect attacks operate independently to those which deploy
resiliency policies and use very basic methods. We propose a
novel EMS cyber-physical-security framework that executes a
resilient policy whenever an attack is detected using security
analytics. In this framework, both the resilient policy and
the security analytics are driven by EMS data, where the
physical correlations between the data-points are identified
to detect outliers and then the control loop is closed using
an estimated value in place of the outlier. The framework
has been tested using a reduced order model of a real EMS site.

Index Terms—Cyber-physical-security, energy management
system, resilient control, virtual sensor, security analytics.

I. INTRODUCTION

Automatic control of electrical components in buildings
has become a necessary task for any energy management
system (EMS) in order to achieve optimal performance. The
aim of a modern EMS is to enhance the functionality of in-
teractive control strategies leading towards energy efficiency
and a more user friendly environment. The EMS operates
several building systems, such as the supervisory control
and data acquisition (SCADA), which controls the smart-
grid of one or more buildings, and the building management
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system (BMS), which controls the building heating demand,
security system, fire alarm system, etc. Heating, ventilation,
and air conditioning (HVAC) is considered to be the highest
source of energy consumption in the building operation,
and the systems most affecting user comfort. Typically,
HVACs are controlled by both the SCADA system and
BMS, where SCADA manages the electrical component
operations (e.g., combined heating and power (CHP)) and
the BMS manages the operations of thermal components
(e.g., boilers). Therefore, cyber-attacks on EMS can lead
to significant financial impact. By connection of the EMS
to the building communication network, the possibility of
EMS cyber-attack increases. The StuxNet cyber-attack sup-
posedly targeting a nuclear-enrichment plant (by corrupting
the measurements and actuator signals) in Iran [1], and
BlackEnergy malware targeting several electricity distribu-
tion companies in Ukraine [2], are concrete examples of
cyber-attacks. Thus, it is crucial to make the control of EMS
to be resilient against cyber crime. The existing methods
for EMS cyber-security are mainly based on running tests
and benchmarks to evaluate the possible cyber-attacks and
their impact [3]. These methods require expert knowledge to
manually perform the tests and attack assessment. There is
currently no end-to-end methodology that covers the main
steps in EMS cyber-security design flow. The continued rise
of complexity of attacks, skills of the attackers, and failing
of the traditional security applications (antivirus, Intrusion
Prevention/Detection Systems, etc.) against those new type of
attacks, necessitate the development of new defense systems.
Targeted aggressive attacks use well-researched and well-
funded multi-vector tactics to introduce stealthy and persis-
tent malware in control infrastructure systems. At the same
time, the risks related to compromise of control infrastructure
are growing dramatically. The integration of old systems
with new ones, and connection of the traditional SCADA
systems to the Internet enlarge the attack surfaces of the
systems. Furthermore, new vulnerabilities are discovered
daily, which may have already been exploited by adversaries
for some time. Recently there has been an increase in
control systems security research [4], [5], [6]. Those work
take in consideration the activity of an intelligent adversary
that would increase for example the operation cost of the
system [4] and the limitations of the attack detection and
identification methods using linear systems in the power
networks [6]. The time during which vulnerabilities remain
hidden, and the time required to patch them together, leave
a window large enough for adversarial system penetration.
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These factors highlight the importance of detecting attacks as
soon as possible in order to minimise damage and impact.
Analytics and response capabilities enable quick detection
of cyber-attacks by checking the system behaviour at ap-
plication level and responding quickly to minimise their
impact. As studied in [7], the operational model must go
beyond the conventional focus on distribution and generation
infrastructure for fault isolation, remediation and recovery,
and focus on information and a new understanding of data
analysis. In addition, as discussed in [8], it requires the
ability to handle processing of huge amounts of data, by
using new analytics and visualization techniques. Then, one
can integrate the results of that analysis with governance
processes that make those results readily actionable.

Once the attack is detected, control policies which are
resilient against the attacks, should be triggered. Design of
control and estimation algorithms that are resilient against
faults is not a new problem, but those algorithms may not
be efficient against malicious cyber-attacks. For example,
virtual sensor (! ") and virtual actuator concepts, have
been introduced in [9] to deal with sensor and actuator
failures, respectively. Attacks may be more complex than
faults, and may use some information of the system to
corrupt the measurements in an intelligent way, and result
in worse consequences than faults. Thus, there has been
a recent increase in control systems security research and
design of resilient control and estimation algorithms against
attacks [10], [4], [11], [12], [13], [14], [15]. In [10], the
authors consider the problem of control and estimation in a
networked system when the communication links are subject
to disturbances (corresponding to packet losses), resulting
from a DoS attack for instance. In [4], the authors consider
a more intelligent jammer who plans his attacks in order to
maximize a certain cost, while the objective of the controller
is to minimize this same cost. The results in that study are
however derived in the case of one-dimensional systems,
which is the main limitation of the work. The problem
of reaching consensus in the presence of malicious agents
is studied in [11]. The authors characterize the number of
infected nodes that can be tolerated and propose a way to
overcome the effect of the malicious agents when possible.
One particularity of that works is that the dynamics is part
of the algorithm and can be specifically designed, rather
than being given as in a physical system. The estimation
and control of linear systems, when some of the sensors or
actuators are corrupted by an attacker, is studied in [12]. In
that work, they propose an efficient algorithm inspired from
techniques in compressed sensing to estimate the state of the
plant despite attacks. In that paper, the authors assume that
the attacked nodes does not change over time. In addition, a
general framework to model and analyse impact of attacks,
is proposed in [5]. In [13], a method for state estimation
in presence of attacks, for systems with noise and modeling
errors is proposed. In that work, it is shown that the attacker
cannot destabilize the system by exploiting the difference
between the model used for state estimation and the real
physical dynamics of the system. In [14], a control technique

is proposed which is resilient against certain sensor attacks.
In that technique, a recursive filtering algorithm, to estimate
the states of the system, is implemented that takes advantage
of redundancy in the information received by the controller.
The main contributions of this paper are:

∙ A practical cyber-secure framework for EMS is pro-
posed, which uses building physics to drive the EMS
cyber-security design flow. This framework, includes
security information analytics to detect attacks and
resilient policy to keep the system running under the
attack.

∙ The framework efficiency is demonstrated on a real
critical attack scenario. Through simulations, it is shown
that the proposed resilient control policy can recover
the system from abnormal conditions (when the system
has been attacked), even when there exist delay for the
attack detections.

The paper is organized as follows. Section II describes a
test-bed, which has been used to evaluate the feasibility of the
proposed cyber-physical-security framework. The framework
is proposed in Section III, which executes a reliable resilient
policy whenever an attack is detected by using security
information analytics. Section IV presents simulation results
(based on the real data from the test-bed) and discusses per-
formance of the proposed framework in terms of capability
of attack detection and resiliency against the attacks. Final
remarks and conclusions are drawn in Section V.

II. APPLICATION DOMAIN

An EMS optimally controls all energy sources in a
building in order to minimise thermal and electrical energy
consumption, while maximising user comfort. Typically,
an EMS employs SCADA and BMS in order to control
electrical and thermal loads, respectively. Recently, smart-
grid infrastructure [16] has been introduced to support both
types of loads, where some equipment such as Combined
Heat and Power (CHP) can be an energy source for both
electrical and thermal demand. In this context, an EMS
would consider an HVAC system an important contributor
to energy consumption, making it a target for attacks with
financial impact. In addition, attacking the EMS in a smart-
grid can lead to safety risk [17] due to damage to water
transport system or to the heating sources (e.g. CHP and
boilers).

As a proof of concept for our framework, an EMS which
controls a small size smart-grid covering several buildings
at the demo-site at Cork Institute of Technology (CIT) [18]
is considered. In the following sections, the main compo-
nents used by the EMS to control HVAC system will be
highlighted. The modelling techniques used to capture the
system dynamics will also be discussed briefly. Figure 1
shows the HVAC system at the CIT demo-site, where the
EMS controls two main heating sources, the boiler and the
CHP, which heat up the water to a temperature set-point.
This flow temperature set-point is identified using a weather
compensation method [19]; an on/off controller is then used
to keep the water in the heating sources at the set-point.



Considering the return temperature as an indicator of the
required thermal demand in the building, then it is used to
determine if the boiler and/or CHP are in operation. The
header is used to deliver the heated water to each floor,
where a mixing valve is used to regulate each floor flow
temperature, to respect a floor flow set-point, again identified
by a weather compensation method. A Proportional-Integral
(PI) control algorithm is used to regulate the position of the
mixing valve. At the end, supplied water to each of the floors
is distributed over several radiators in each building, where
radiator is controlled using an on/off controller to reach a
predefined room temperature set-point.
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Fig. 1. Typical BMS for HVAC system

In order to evaluate the feasibility of the proposed frame-
work, a Simulink model was developed to capture the CIT
demo-site dynamics. The model was developed using Gray
Box modelling [20], where the model structure is created
based on the thermodynamic theory of each component
and the model parameters are tuned using real-world data
from the CIT demo-site. The model has been validated
using data trend analysis against the real-world data at the
CIT demo-site. According to Modeling, Analysis, Simulation
& Computation (MASC) Readiness Level (MRL), model
calibration against output curves trends is MRL > 4, which
is used for concept and detailed design.

III. EMS CYBER-SECURITY FRAMEWORK

In this section, a cyber-physical-security framework is
proposed that executes a reliable resilient policy whenever
an attack is detected using security information analytics
(SIA). In this framework, both the resilient policy and
the SIA are designed using physical correlations between
the data-points. Identifying correlation between data-points
requires an expert knowledge input, which is considered to
be costly in the building automation domain. To mitigate
this drawback, a risk analysis step is employed to identify
the sensors with the maximum impact. A risk assessment
stage will be added to this framework in future work. In
the following subsections, the theoretical background of SIA
and resilient policy will be highlighted, with an initial risk
assessment for some critical sensors at the demo site.

A. Risk Assessment

After examining the financial and safety impact of several
attack scenarios on the HVAC at the demo site, the header
and return temperature sensors were down-selected to be the
most critical. The financial impact is linearly interpolated

based on historical energy consumption and its associated
cost for the demo site. As shown in Figure 2, applying a
negative offset of 10∘C to the header flow temperature sensor
can lead to high financial risk (10% energy degradation,
about 5000 EUR per year for the demo-site). In addition,
this attack scenario can force the boiler or the CHP to
increase the water temperature to more than 80∘C, which
leads to water circuit damaging. Another attack scenario
consists of applying a positive offset of 10∘C to the return
temperature sensor leads to high safety risk due to damaging
of CHP.
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Fig. 2. Risk analysis for a financial impact of attacking a flow temperature
sensor in an HVAC system

B. Resilient Control

A schematic of the proposed hierarchical control strategy
for the HVAC system is illustrated in Figure 3. In this
architecture, the HVAC system is represented by intercon-
nected plants $!, & ∈ Φ, where Φ = {1, ..., (} is the set
of all the plants’ indices. These plants are controlled by the
local controllers )!, & ∈ Φ, which are implemented in the
BMS and signals (control and measurement signals) are sent
over a communication network. In this networked control
system, the controller )! sends the control signal *! to
the plant $!, and the plant sends the sensor measurement
+! to the controller )!. The received control signal by the
plant is called *̃!, and the received sensor measurement
signal by the controller is called +̃!. In this scheme, the
local controller )!, receive the reference signal ,! from the
control center, and the measurement signal +̃!, to calculate
and send the control signal *!. Note that the two signals *!

and +! could be modified by the attackers and when they pass
through the communication local network. Here, we consider
attacker as a man in the middle, who can secretly alters
the communication between the plants and controllers, and
corrupt the signals. Thus, there are two different conditions
that the controlled HVAC system works in: normal and
abnormal conditions.

Normal condition: Under this condition, the BMS is
healthy and there is no anomaly in the signals being sent
or received by the plants and controllers (+̃! = +! and
*̃! = *!, & ∈ Φ).

Abnormal condition: In this situation, the BMS is being
attacked, and the attackers have the ability to alter the cyber-
physical dynamics of the system through exogenous inputs.

To model the attacks here, we assume - number of the
sensor measurements, +" for . ∈ Γ are under attack [13],



[15]. Here, Γ ⊂ Φ is the indices set of corrupted mea-
surements, and the cardinality of Γ is considered to be
card(Γ) = -. We also define Γ# = Φ∖Γ as the indices set
of healthy measurements, where card(Γ#) = ( −- = ℎ.

An attack example (the attack 01 ) is shown in the Fig-
ure 3, in which the offset Δ+! is added to the measurement
signal +! at time 2′. The time 2′, is called attack start
time here, and is detected by the SIA, as is described in
Section III-C. By having attacks to the system at time 2′,
we have +̃! ∕= +!, & ∈ Γ for 2 > 2′.

Remark 1 Here we assume that there is no attack on the
control signals, and they are received by the controllers
without any changes (*̃! = *!, & ∈ Φ). The setup can be
easily extended to include also the attacks on the control
signals (see [13] for a related study).

As discussed in [21], attacks to the measurement signals
may lead to system instability. Thus, a control strategy to
increase the resiliency of the controlled system is proposed
here. In this strategy, a data fusion filter (Virtual Sensor
(! ")) and SIA, are implemented in the supervisory level
controller (Control center). In this framework, ! " estimates
the output signals (+̂!, & ∈ Φ) based on all the available
healthy measurements, at all the times. Since the ! " is
running in the supervisory level, it has access to system-wide
measurements (+!, & ∈ Φ) and can estimate the measurement
signals, based on the available model of the system. After
the time 2′, and detecting the attack by SIA, the correction
signal +̂! − (+! + Δ+!) is being sent into the BMS, only
for & ∈ Γ, to be added to the corrupted signal +! +Δ+!. In
this manner, the corrupted signals are being replaced by the
estimated output signals +̃! = +̂!, & ∈ Γ and for the healthy
signals we have +̃" = +" , . ∈ Γ# .

The estimated output signals sent by the Control center
would not be of the same quality, and may be time-delayed
compared to measurements of the system under normal
condition. However, the estimated data is more useful than
the attacked one, and so would contribute to a more resilient
control system. The other advantage of this approach is that it
does not require many changes in the lower-level designs. A
similar idea has been proposed in [22], in which a predictive
outage compensator is designed to generate control signals
when there is a communication outage and the actuator in
the system does not receive the control signal.

1) Modeling and the Optimal Virtual Sensor: In the
following, a mathematical formulation of the problem, under
normal and abnormal conditions, is given. The plant $! is
given by

3!(2 + 1) =0!3!(2) +4!*̃!(2) +5!6!(2)

+
∑

" ∕=!

7!"8"3"(2) + 9!(2),

+!(2) =8!3!(2) + :!(2).

(1)

where, 3! ∈ ℝ$! is the local state vector of the plant,
*̃! ∈ ℝ%! is the received control signal vector, and +! ∈ ℝ&!

is the local measurement vector. In (1), 6! is a deterministic
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Fig. 3. Schematic of a hierarchical control system with a communication
network, which is resilient against the adversarial actions on the measure-
ments.

disturbance vector, and 9! and :! are vectors of process
and measurement white noise of the plant, respectively.
Here, the matrices 0!, 4!, 8!, 5! and 7!" have dimensions
conformably with the vectors, and the matrix 7!" captures the
interaction between the plants $! and $" . The local control
signal *!(2) is given by the controller )!,

;!(2 + 1) = <!;!(2) + =! (+̃!(2)− ,!(2)) ,

*!(2) = >!;!(2),
(2)

where, ;! ∈ ℝ'! is the local state vector of the controller,
*! ∈ ℝ%! is the local control signal vector calculated by
the controller, +̃! ∈ ℝ&! is the received measurement vector,
and ,! ∈ ℝ&! is the reference signal sent by the control
center. Here, the matrices <!, >! and =! have dimensions
conformably with the vectors. Thus, the closed-loop inter-
connected system evolves as

[
3(2 + 1)
;(2 + 1)

]
=

[
[0] + 7 [8] [4][>]
[= ][8] [<]

]

︸ ︷︷ ︸
("#

[
3(2)
;(2)

]

+

[
[5] 0
0 [−= ]

]

︸ ︷︷ ︸
)"#

[
6(2)
,(2)

]
+

[
I 0
0 [= ]

]

︸ ︷︷ ︸
*

[
9(2)
:(2)

]

+(2) =
[
[8] 0

]
︸ ︷︷ ︸

#"#

[
3(2)
;(2)

]
+ :(2),

(3)



where, [0] represents a block-diagonal matrix with 0! as the
&-th diagonal block, and 7 is a matrix with 7!" as the &.-th
block (diagonal blocks are zero). Note that 3 = [3⊤

1 ... 3
⊤
+ ]⊤,

; = [;⊤1 ... ;⊤+ ]⊤, + = [+⊤1 ... +
⊤
+ ]⊤, 6 = [6⊤1 ... 6

⊤
+ ]⊤, , =

[,⊤1 ... ,
⊤
+ ]⊤, 9 = [9⊤

1 ... 9
⊤
+ ]⊤ and : = [:⊤1 ... :⊤+ ]⊤. Let the

expectations to be given as

E
[
9(2)
:(2)

]
= 0, E

[
9(2)
:(2)

] [
9(?)
:(?)

]⊤
=

[
@1 @12

@21 @2

]

︸ ︷︷ ︸
,

A-.,

where, @1 and @2 are the covariance of 9 and :, respec-
tively, and @12 = @⊤

21 is the constant cross covariance be-
tween 9 and :. Under the normal and abnormal conditions,
the ! " generates an estimate of the outputs (8!3!(2), & ∈ Φ)
of the controlled HVAC system, differently.

Assumption 1 We assume here that, because of communi-
cation and computation delays, at the given time 2, only the
measurements till time 2 − 1 are available.

Estimates under normal condition: Under this condition,
the optimal estimator for the states in (3), is the Kalman filter
(see [23]).

[
3̂(2 + 1∣2)
;̂(2 + 1∣2)

]
= 0/.

[
3̂(2∣2 − 1)
;̂(2∣2 − 1)

]
+4/.

[
6(2)
,(2)

]

+)/.

[
+(2)− 8/.

[
3̂(2∣2 − 1)
;̂(2∣2 − 1)

]]

︸ ︷︷ ︸
0(-)

, (4)

where,

)/. =

(
0/.$8⊤

/. +B

[
@12

@2

]) (
8/.$8⊤

/. +@2

)−1
,

$ = 0/.$0⊤
/. +B@B⊤ −

(
0/.$8⊤

/. +B

[
@12

@2

])

×
(
8/.$8⊤

/. +@2

)−1
(
0/.$8⊤

/. +B

[
@12

@2

])⊤
.

(5)
Here, C(2) is the optimal one-step ahead prediction error of
the ! ", )/. is the stationary Kalman gain, and $ is the
stationary error covariance matrix. Note that by 3̂(2∣2 − 1)
we mean an estimation of 3(2), given all the measurements
+!(2) up until time 2 − 1, and the optimal one step ahead
prediction of +(2) is +̂(2) = 8/.3̂(2∣2 − 1).

Assumption 2 There exists redundancy in the information
received by the ! ", and the system remains observable by
using +!, & ∈ Γ# for the estimation.

Estimates under abnormal condition: Under this condi-
tion, as it was mentioned before, some of the measurement
signals in BMS are corrupted (+̃! ∕= +!, & ∈ Γ) after the
time 2′ and are detected by SIA. Thus, SIA informs the ! "
that the measurement being sent by sensor & is corrupted (see
Figure 3) and should not be used for updating and predicting
the states of the system.

In this case, the Kalman filter is no longer stationary and
should use a time-varying gain. Note that the filter uses the

healthy measurements +" , . ∈ Γ# for the estimation. Thus,
the estimator takes the prediction step for the state of the
system as
[
3̂(2 + 1∣2)
;̂(2 + 1∣2)

]
= 0/.

[
3̂(2∣2 − 1)
;̂(2∣2 − 1)

]
+4/.

[
6(2)
,(2)

]

+) ′
/.(2)

[
+′(2)− 8 ′

/.

[
3̂(2∣2 − 1)
;̂(2∣2 − 1)

]]
,

(6)

where, +′(2) a vector of healthy measurements +!(2), & ∈
Γ# , and the time-varying Kalman gain is given by

) ′
/.(2) =

(
0/.$

′(2)8 ′⊤
/. +B

[
@12

@2

])

× (8 ′
/.$

′(2)8 ′⊤
/. +@2)

−1,

$ ′(2) =0/.$
′(2 − 1)0⊤

/. +B@B⊤−
(
0/.$

′(2 − 1)8 ′⊤
/. +B

[
@12

@2

])

×
(
8 ′

/.$
′(2 − 1)8 ′⊤

/. +@2

)−1

×
(
0/.$

′(2 − 1)8 ′⊤
/. +B

[
@12

@2

])⊤
.

(7)

Here, 8 ′
/. is constructed from the matrix 8/. by removing

the rows related to 8!, & ∈ Γ in that, and $ ′(2) is the time-
varying error covariance matrix. Note that immediately after
2′, $ ′(2) in (7) would be initialized by $-′ = $ in which
$ is given by (5), and will update in the next time steps.

Finally, the ! " prediction is +̂(2) = [8]3̂(2∣2 − 1),
and it feeds the estimation +̂(2) into the BMS to replace
the corrupted measurement signals, which means +̃!(2) =
+̂!(2), & ∈ Γ.

Remark 2 Considering Assumption 1, the output estimate
+̂(2) = [8]3̂(2∣2−1) is calculated by the ! ", based on the
state prediction 3̂(2∣2 − 1). Note that, in the cases where
the delay is less than one sampling period, the ! " can do
a better estimation using +̂(2) = [8]3̂(2∣2), based on the
updated state estimate 3̂(2∣2).

2) Implementation Using System Identification: The pro-
posed resilient policy does not need to estimate the lower-
level states, since only the estimated outputs are used.
Therefore, in practice, one can identify a model that is able to
explain the covariance of the outputs, in cases where a model
like (3) is not available. To identify a linear model of the
controlled HVAC system, which is described in Section II,
a subspace identification followed by a prediction error
method [24] is applied. In this identification, the external
temperature (which is the disturbance 6 to the system) is
considered as the input, and the temperature of header flow,
header return, Nimbus building ground floor, Nimbus build-
ing first floor, Rubicon building ground floor and Rubicon
building first floor are considered as the outputs, respectively
(( = 6). The system modeling in this manner results in a
simple linear third order system, in the innovation form [25]:

3%(2 + 1) = 0%3%(2) +4%*%(2) +)%C(2)

+%(2) = 8%3%(2) +5%*%(2) + C(2),
(8)



where, 3%, *% and +% are the system state, input and output,
respectively. The matrices 0%, 4%, 8% and 5% are the system
matrices with appropriate dimensions, and the innovation
C(2) is white noise and independent of past input and output
data [25].

Comparing the represented systems in (3)-(4) and (8), the
outputs + and +% should be close, assuming a successful
system identification. Since the identified model in (8) is
linear also, we can reuse the expressions (4)-(7) to construct
+̂, having the matrices 0/., 4/., 8/., 5/. and )/? to be
substituted by the matrices 0%, 4%, 8%, 5% and )%, respec-
tively. Thus, the VS in the supervisory level, by having access
to system-wide measurements (+1, ..., +6), can estimate the
measurement signals based on the available model of the
system in (8).

C. Security Information Analytics

Intelligence-driven security systems understand what good
behaviour is within an IT environment by monitoring and
learning a variety of machine and human activities. Analytics
solutions often rely on logs and configuration information as
data sources. Similarly, capabilities such as network packet-
capture are important in establishing normal behaviour in
IT infrastructures. These techniques help organizations to
learn what is typical within an IT environment so that future
deviations from the norm (which often indicate problems),
can be identified and investigated. Analysis systems capture
and analyse terabytes of rapidly evolving real-time data from
multiple sources, by using different methods of detection. For
example, data can be captured and analysed for potential
security issues as it traverses the network. This analysis,
identifies suspicious activities of the attackers (which are
done by the tools, services, communications and techniques),
that do not depend on logs, events, or signatures from
other security systems. Processing of these information flows
happens as they occur. It means that the suspicious activities
are spotted while there is still time for security teams to stop
the attacks in progress. To do this, the SIA system works at
the application-level, and it will check the entire system and
each component’s behaviours, and provide analysts with an
overview of the security status of the control system. For
example, measurement data is examined to detect potential
anomalous behaviour. Then, the analytics system can operate
on live data streaming from the system or used offline for
investigation. The SIA system feeds the resilient control
system with information indicating which measurements
are corrupted. SIA consists of a set of outlier detection
algorithms and a web application that allows analysts to
examine the results. It uses two detection methods: the
static outlier detection, which relies on preconceived rules
to detect outliers; and the machine-learning (ML) outlier
detection, which rely solely on the data to determine normal
behaviour and classify outlier behaviour. There are two static
detectors: a threshold-based outlier detector, which enforces
the expected operational limits on single variables measured
by the sensors; and a rule-based detector, which examines the
behaviour of the system based on physical laws. Finally, a

single dynamic machine-learning outlier detector which uses
a ML algorithm to learn the normal behaviour of the system
and finds anomalies in new data is used. The results from
these three algorithms can be combined, in particular the ML
component and the rule-based detector. Some work remains
to be done in this area to determine the best approach,
however there are several possibilities. Firstly, the overlap in
results can be used to reduce false positives and determine
which measurement are most important. Depending on the
level of confidence in each detector, an anomaly score could
be calculated for each timestamp. This would provide a
ranking of incident severity for analysts to act upon.

1) Machine-learning Outlier Detection: This outlier de-
tector uses a one-class support vector machine (OC-SVM)
that learns the normal behaviour of the system to look for
anomalous data. Many ML problems involve the labelling of
measurements into groups. These algorithms can be divided
into supervised and unsupervised, depending on whether
they work on labelled data. In many anomaly detection
problems, the data available is highly unbalanced, meaning
that it contains mostly data associated with one class, usually
normal behaviour. This occurs when obtaining examples
of anomalous data is either time-consuming, infeasible, or
expensive. To treat such scenarios, standard ML algorithms
have been adopted to work with a single class. A OC-
SVM [26], [27] is used in this case. This algorithm tries to
create a hyperplane that maximally separates the data from
areas of phase-space which are not populated.

This also has the advantage of not assuming any structure
for the anomalous behaviour. By avoiding searching for
specific attacks the approach remains capable of detecting
previously unobserved attack patterns.

Using the historical training data, a model is learned for
each sensor in question. These models are then used to
predict outliers against new unseen data. In this case, the
algorithm produces a simple binary decision and no outlier
score is assigned.

2) Threshold-based Outlier Detection: In this detection
method, a threshold-based detector compares the measured
values against expected operational limits. A measurement
is deemed anomalous if this threshold is violated.

3) Rule-Based Detection: A rule-based detector verifies
that the measured sensor values obey the physical laws and
stay within the statistical boundaries. These boundaries can
be violated due to several reasons such as asynchronous
measurements, system and sensor noise, quantisation, and
etc. These sources of statistical errors can be estimated
beforehand to generate a historical baseline, after which any
anomaly out of this baseline can be deemed malicious.

Static rules: These rules contain only the current measure-
ments from the sensors. While static rules are the simplest
to be implemented, they only apply to the systems or
subsystems that exhibit no dynamics.

Dynamic rules: These rules take into account system
dynamics to estimate the current measurements. Implement-
ing dynamic rules requires estimating and keeping track of
hidden system states, but it can be applied to systems or



subsystems that exhibit linear time-invariant dynamics. Once
the residue C(2) is calculated here, the further analysis and
detection is similar to that of the static rules above.

For example, in the case of the CHP and boiler systems
shown in Figure 1, the system measures the header flow
temperature (+1), and the header return temperature (+2). The
system dynamics are based on the number of boilers ((1),
which are currently operational and we have (1 (D) = 1
or (1 (D) = 2. The boilers’ water temperature (1!), are the
hidden states here. Applying conservation of energy to this
system, discrete-time equations for the temperature of the
water in the boilers can be deduced:

1! (2 + 1) =
E! (2)F1

82$B!
+

ΔB!

(1 (2)B!

× (+2 (2)− :2 (2)− 1! (2)) + 9!(2),
(9)

where, 9(D) and :(D) are process and measurement white
noise, respectively. Here, E! indicates the operational state
of each boiler (E! = 1 if the boiler is on, and E! = 0 if it
is off). F1 is the energy used by the boiler to heat up the
water, ΔB! is the mass flow into the boilers during each
time slot, B! is the mass capacity of each boiler, and 82$

is the heat capacity of the water (all are assumed constant).
The temperature of the header flow is given by

+1 =
1

(1 (2)

∑

!

E! (2)1! (2) . (10)

These equations are not linear in the current form. However,
they are linear in each operating condition of number of
operating boilers ((1). For example, if the system has 2
boilers (as is the case in the test bed), and one of them is
always operational, there are only two operating conditions:
(1 = 1 and (1 = 2. If the operating condition is known,
these equations can be written as a system using the boiler
temperatures as the hidden states:

31(2 + 1) = 0131(2) +41*1(2) + 9(2),

+1(2) = 8131(2) +51*1(2) + :(2),
(11)

in which

31 =

[
11

12

]
, *1 =

⎡

⎣
E1F1

E2F1

+2 − :2

⎤

⎦ , +1 =

[
+1
+2

]
,

01 =

[
1− Δ*1

+%*1
0

0 1− (+%−1)Δ*2

+%*2

]
,

41 =

[
1

#&$
*1

0 Δ*1
+%*1

0 1
#&$

*2

Δ*2
+%*2

]
,

81 =

[
1
+%

+%−1
+%

0 0

]
, 51 =

[
0 0 0
0 0 1

]
.

(12)

Given the system above, a Kalman filter with gain ) can be
used to estimate the hidden states and the next measurements.

Remark 3 In contrast to the Kalman filter in Section III-
B.1, which makes a system-wide state estimate (+1, ..., +6),
the filter here makes the estimate based on a subset of
measurements (+1 and +2).

IV. RESULTS

In this section, the proposed framework is evaluated
through simulation results (based on the data from the CIT
test-bed model).

A. Security Information Analytics

In the simulations and for the scenarios described in
Section III-A we focus on the rule-based detection method
due the simulated dataset does not contains threshold outliers
and the amount is not enough to properly train the Machine
Learning component. As it is shown in Figure 1, the attacks
are considered to be on the header flow and header return
temperature measurements (the attacks 011 and 012 on the
signals "1 and "2, respectively). Thus, three data-sets are
examined with the following characteristics:

∙ The header flow temperature is manipulated (011)
∙ The header return temperature is manipulated (012)
∙ Both header flow and return temperatures are manipu-

lated (011 and 012)
The aim of the simulation is to understand how the SIA

reacts in different scenarios. Measurements were simulated
every second over a period of 24 hours leading to a 86400
samples. A variation on the data resolution will increase the
detection time, reducing the accuracy of the calculation and
the number of outliers per hour. In our simulation with one
second of data resolution, the attack will be detected after
one second of starting. For that reason the data resolution
must taken in consideration to properly configure the tool
in relation to the analyzed system. The more variables and
sensors the SIA can check, the smaller the detection time
will be due to the correlation of events and the amount
of outliers generated. All the three scenarios were flagged
as containing a substantial amount of anomalies. Figure 4
shows the number of outliers per hour for each scenario.
The distribution of outliers are similar for the cases where
the attacks 011 and 012 manipulate the measurements,
individually. As it is illustrated, the attacks in all the scenario
start at 2:00 and there is a substantial amount of outlier
activity detected. The large outlier multiplicity is also the
result of the granularity of the measurement.

Less outliers are detected in the combined attack scenario,
compared to the single attacks scenarios, because the rules
check the internal temperature of the boilers against the in-
coming temperature and outgoing temperature. By modifying
both incoming and outgoing temperatures, the behaviour of
the system is similar to normal operations, and outliers are
not detected as often. The individual 011 and 012 attacks
are less subtle and so result in a much larger number of
outliers being detected. The attack stops at 23:00 in the 011

scenario so the number of outlier falls to 0, instead in 012

it stops at 21:30 and the number of outliers per hour falls to
around 1000.

B. Resilient Control

The performance of the proposed resilient control for the
BMS, is evaluated in this section. In the simulation results
shown in the Figure 5, the temperature of header flow,
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Fig. 4. Number of outliers found per hour. Shown are the attacks on !"1,
attacks on !"2, and combined attacks on !"1 and !"2.

header return, the ground and first floor of Nimbus building,
and the ground and first floor of the Rubicon building are
under consideration. These temperatures are corresponding
to the six measurements of the sensors "1-"6 in Figure 1,
respectively. The results are shown for three different cases
of healthy BMS, attacked BMS, and attack-resilient BMS.
In the simulations, the worst attack scenario (the combined
attacks 011 and 012, which is described in Section IV-
A) is considered to start at the 2′ =7200s (at 2:00 am).
It means that after the 2′, the measurements of the header
flow and header return temperatures are manipulated by
adding 15∘C to each of them, and are fed to the respective
controllers. In this attack scenario, the attack is considered
to be detected by the SIA immediately after 2′, and the
corrupted measurements are replaced with their estimates
that are sent by the VS. As it is illustrated in Figure 1,
the multi-attack on the measurements leads to high safety
risk due to damaging of CHP in the attacked BMS, since
return temperature is below 65∘C after the attack. In this
attack scenario, the attack-resilient BMS is robust against the
multi-attack and have the same performance as the healthy
BMS.

In Figure 6, measurements of the header flow and header
return temperatures in the healthy BMS are shown, and
compared with the estimates of the outputs of the attack
resilient BMS. Note that the estimates of the outputs are
computed by the VS, and one can see that the VS accurately
estimates the measurements of the healthy system in the
presence of the attack.

Some major factors such as communication delay, large
amount of data, and time-consuming security analysis algo-
rithms, can affect the real-time attack detections. To inves-
tigate performance of the proposed resilient control in these
situations, the following scenario is considered. Assume that
the same attack as before, starts at time 2′ =7200s, and is
detected at 7500s (with five minutes delay). As it is shown
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Fig. 5. Performance comparison of the Healthy BMS, Attacked BMS and
Attack-Resilient BMS, in the presence of attack on the header flow and
return temperature measurements
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Fig. 6. Measurements of the header flow and header return temperatures in
the healthy BMS in comparison with the estimation of the outputs (which
are computed by the VS) in the attack-resilient BMS.

in Figure 7, the attack-resilient BMS has the same outputs
as the attacked BMS until attack detection (7500s), but it
can recover the system to return to the normal conditions
after that. We have done other simulations with different
delays for the attack detections, and in all the cases, the
attack-resilient BMS has recovered the system to return to
the normal conditions after the attack detection.

V. CONCLUSION

The paper presented a cyber-security framework as appli-
cable to a building Energy Management System. The frame-
work uses the physics of the system to drive the security
information analytics and resilient policy. The framework
efficiency was demonstrated on a real critical attack scenario,
where the security information analytics algorithm triggers
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Fig. 7. Performance comparison of the Healthy BMS, Attacked BMS
and Attack-Resilient BMS, in the presence of delay in attack detection (the
attack starts at time 7200s, and is detected at 7500s).

the resilient control to recover from the attack. Simulation
results show that the proposed resilient control policy can
recover the system from abnormal conditions, even when
there exist delay for the attack detections. As a future work,
this framework is planned to be extended to consider the risk
assessment as part of the resilient policy.
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