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Abstract— Sensor networks use binary measurements and
state estimations for several reasons, including communication
and processing overheads. Such a state estimator is vulnerable
to attackers that can hijack a subset of the sensors in an effort
to change the state estimate. After exhibiting a simulation that
demonstrates the possible effect of integrity cyberphysical sys-
tems, this paper extends the authors’ methodology for designing
the detectors resilient to integrity attacks, using the concept
of invariant sets, to systems where the sensor measurements
are not independent. In cyberphysical systems, the sensors in
question monitor a system constrained to obey physical laws,
so that physical quantities measured by and the noise in each
sensor will be correlated to the sensors close to it. Further
increase in the confidence of the estimate can be achieved by
considering these correlations. This paper focuses on modeling
the correlation between the sensors and its ramifications on the
worst-case probability of detection.

I. INTRODUCTION

Cyber-Physical systems (CPS) often employ distributed
networks of embedded sensors and actuators [1] that inter-
act with the physical environment, and are monitored and
controlled by a Supervisory Control and Data Acquisition
(SCADA) system. Distributed sensors and actuator networks
are seen in applications like critical infrastructure monitoring,
autonomous vehicle control, healthcare, etc.

Given the ubiquity of cyber-physical systems, and the
importance their confidentiality, integrity, and availability,
it is easy to see why they are a rich target for attacks.
The incentives for attack could range from simple economic
reasons and advantage over industrial competitors, to politi-
cal espionage and sabotage and full-fledged terrorism. With
the advent of increasingly “smart” CPS and deployment
of an increasing number of sensors to remote locations
where enforcing their security is infeasible, isolation of CPS
networks and controllers from the Internet can only offer a
limited amount of protection.

Additionally, in the recent past, human errors have helped
attackers to introduce malware into heavily secured and iso-
lated networks. For example, the Stuxnet worm, which was
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designed to secretly reprogram certain industrial centrifuges
[2], was introduced by infected USB flash drives [3], and
further used peer-to-peer calls to infect other computers
inside private networks [4]. Clearly, isolation of networks
and components, and in general, security with obscurity, is
only a short-term solution. The Stuxnet worm has indubitably
brought to light serious security susceptibilities in industrial
control systems. This attack resonated with a recent concern
in distributed control system security, whereby an attacker
could modify the software or environment of some of the
networked sensors and/or actuators, to launch a coordinated
attack against the system infrastructure.

Another mitigating measure is the use of cryptography.
Theft and reverse-engineering of cryptographic keys notwith-
standing, an attacker could still attack the physical envi-
ronment of the components, bypassing the communication
network entirely. There are other methods of approaching
CPS security, most of which rely either on the information
content of the system or on the robustness of controllers
and estimation and detection algorithms. Concentrating on
the information content lacks a system model, blinding the
detector to a wide variety of attacks (for example, lowering
electricity bills by bypassing the meter). On the other hand,
robust controllers and algorithms rely on outliers, whereas
random, uncoordinated failures can hardly be assumed during
an attack.

After briefly demonstrating the need to secure cyberphys-
ical systems against integrity attacks, this paper looks at the
problem of secure detection for a system with a binary state
and correlated binary sensors. For systems using a multitude
of distributed sensors for detecting a binary state, it is often
superfluous to consider continuous readings from all sensors,
and in fact, might prove to be infeasible for both sparse
and low-powered communication networks, as well as small
embedded processors. It is usual on such a platform for the
sensors to be programmed to make a decision based on the
information they have, and only communicate this decision
over the network, reducing the communication overhead. The
controller then makes a decision based on these preliminary
decisions.

Considerable research, notably by Maronna et al. [5] and
Huber and Ronchetti [6], has been devoted to constructing
estimators that are not unduly affected by outliers or other
small departures from model assumptions , which can be
used to nullify the effect of outliers. However, the case of an
attack is quite different from randomly occurring outliers,
and such methods need to be reformulated for CPS. Bad
data detection has been used in power grids for a long time
as mentioned by Abur and Expósito [7]. Liu et al. [8] and



Sandberg et al. [9] consider how an attacker can design and
inject inputs into measurements to change state estimation
results.

A system similar to the theoretical model in this paper
has been previously studied by Agah et al. [10], Alpcan
and Başar [11], Fuchs and Khargonekar [12], and later by
Vamvoudakis et al. [13], by formulating the problem as
a zero-sum partial information game in which a detector
attempts to minimize the probability of error and an attacker
attempts to maximize this probability. The optimal policy
recommended by the authors in the latter work is a mixed
strategy, where the detector chooses between two rules,
based on the perceived probability of attack. This policy is
dependent on the estimation of this probability of attack,
which, for a lot of systems, is not only extremely difficult
to analyze and estimate, but might also change widely based
on several external factors.

Kodialam and Lakshman [14] also modeled intrusion
detection as a zero-sum game, albeit between the service
provider and the intruder. Other game-theoretical approach
to solving the problem have been proposed by Bier et al.
[15], who used the method increasing the attractiveness
of some sensors to the attacker, while designating others
as unimportant. The chief drawback of game-theoretical
approaches is that the final detection output is possibly a
mixed strategy, and not a function of just the inputs. That is,
for the same inputs, the detector output can change randomly
based on which policy is chosen, a behavior that may be
undesirable in many systems.

Robust detection with minimax have been previously stud-
ied by Huber [16], Huber and Strassen [17] and Kasam and
Poor [18], using uncertainty classes and the detector being
designed as a naive-Bayes or Neymann-Pearson detector.
the challenge in such an approach is constructing the least
favorable distributions in the uncertainty classes, which are
the classes that are supposed to be the hardest for the detector
to distinguish.

Seeking a deterministic solution, we consider the behavior
of such a system in the presence of a powerful attacker,
without looking to estimate a probability that the adversary
will attack. We consider an attack model where the adversary
can attack up to a certain number of sensors, while remaining
undetected. After reviewing some previous results, we will
reformulate the system to consider correlated sensor mea-
surements and explore in more detail the case where all the
sensors are equivalent.

II. PAPER CONTRIBUTION

This paper extends the previous results of the authors [19]
by considering the physical correlation between the binary
sensors. The correlation causes a change in the expressions
of the worst-case probabilities of false-alarm and detection.
Considering the extra factor while constructing the detector
improves the resilience of the detector when attacked by
an intelligent attacker. The paper considers methods for
including correlation coefficients in the detector formulation,
and shortcomings of some correlation assumptions that are

usually made in literature, that can make some calculated
probabilites negative. The paper provides a new way to
ensure non-negativity of these probabilities. We conclude
with a simulation that verifies the computations laid out in
the paper.

III. BINARY SENSORS

In this section, we look at the problem of secure detection
for a system with a binary state and binary sensors. Although
a sensor giving out just one bit of information seems a
trivialization of the integrity attack of the previous section,
it is more than just a simplified version. For systems using a
multitude of distributed sensors for detecting a binary state,
it is often superfluous to consider continuous readings from
all sensors, and in fact, might prove to be infeasible for both
sparse and low-powered communication networks, as well as
small embedded processors. It is usual on such a platform
for the sensors to be programmed to make a decision
based on the information they have, and only communicate
this decision over the network, reducing the communication
overhead. The controller then makes a decision based on
these preliminary decisions.

First, the previous results proposed by the authors [19] for
non-correlated binary sensors are reviewed.

A. Original Problem

Consider a binary random variable X , with distribution

X =

{

0 with probability P0

1 with probability P1
, (1)

where P0, P1 ≥ 0, and P0 + P1 = 1. Without loss of
generality, let P1 ≥ P0.

To detect X , we have available a vector

y =

⎛

⎜

⎜

⎜

⎝

y1
y2
...
ym

⎞

⎟

⎟

⎟

⎠

∈ {0, 1}m (2)

of m binary sensor measurements, each of which is con-
ditionally independent from the others given X . Let each
sensor have a probability of false alarm (α)

P
(

yi = 1
∣

∣X = 0
)

= αi, (3)

P
(

yi = 0
∣

∣X = 0
)

= 1− αi, (4)

i = 1, 2, . . . ,m,

and probability of detection (β)

P
(

yi = 1
∣

∣X = 1
)

= βi, (5)

P
(

yi = 0
∣

∣X = 1
)

= 1− βi, (6)

i = 1, 2, . . . ,m.

If any of the sensors are actually such that αi ≥ βi for some
values of i, the measurements provided by those sensors
can be inverted before being used, making αi ≤ βi. Thus,
without a loss of generality, we can consider αi ≤ βi ∀i.



In the case where there is no attack, a Bayes detection
algorithm suffices.

P0

m
∏

i=1

αyi

i (1− αi)
(1−yi)

H1

≶
H0

P1

m
∏

i=1

βyi

i (1− βi)
(1−yi) (7)

where H0 ≡ X̂ = 0 and H1 ≡ X̂ = 1.
It is assumed that an attacker wants to increase the

probability that the detector makes an error in detecting X .
The attacker has the ability to flip up to l of the m sensor
measurements, but the detector does not know which of the
m measurements have been manipulated. While the detector
knows that at most l measurements have been manipulated,
the exact number is also unknown to the detector. This means
that any detection scheme X̂ = f (y) has to rely on the
original measurement vector (y) manipulated by the attack
vector (ya)

yc = y ⊕ ya, (8)

where ya ∈ {0, 1}m, and ∥ya∥ ≤ l. 1 Here ⊕ denotes the
element-wise exclusive-or operation. By selecting which bits
of ya are 1, the attacker chooses which sensors to attack.

Remark 1: For the purposes of this paper, resiliency is
defined as a low probability of error in the worst-case
scenario. Thus, resiliency can be considered to be equivalent
to the worst-case probability of detection.

The detection problem is formalized as a minimax problem
where one wants to select an optimal detector

X̂ = f (yc) = f (y ⊕ ya) , (9)

to minimize the probability of error (or maximize the worst-
case probability of detection).

To have the detector follow the Kerckhoffs’ Principle
which states that, a cryptosystem should be secure even
if everything about the system (except the key) is public
knowledge, we assume that the attacker has full knowledge
about f , the state of the system X , and all measurements
y1, y2, . . . , ym.

Using the concept of imperturbable sets Y0 and Y1 (the
sets of measurements y that, even when attacked, will not
affect the output of the detection function f ):

Y0 =
{

y
∣

∣f(y ⊕ ya) = 0, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l
}

, (10)

Y1 =
{

y
∣

∣f(y ⊕ ya) = 1, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l
}

, (11)

as derived in the previous work [19], the problem of
finding the optimal detector can be formally stated as

max
Y0,Y1

P0

∑

y∈Y0

(

m
∏

i=1

αyi

i ·
m
∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(

m
∏

i=1

βyi

i ·
m
∏

i=1

(1− βi)
(1−yi)

)

(12)

subject to d (Y0, Y1) ≥ 2l + 1, (13)

1Since only binary states and sensor measurements are concerned, both
the 0-norm and the 1-norm are equivalent. Hence, for legibility, the subscript
is dropped with the understanding that it can be either the 0-norm or the
1-norm.

where,

d (a, b) = ∥a− b∥ , (14)

d (a,B) = min
b∈B

∥a− b∥ , (15)

d (A,B) = min
a∈A

∥a−B∥

= min
a∈A,b∈B

∥a− b∥ . (16)

IV. MODELING THE CORRELATION

In cyberphysical systems, the sensors in question monitor a
physical system — a system that is constrained to obey phys-
ical laws. In such a case, the physical quantities measured by
all sensors can scarcely be independent of each other. The
measurements and the noise of each sensor will be correlated
to the sensors close to it. This section focuses on modeling
the correlation between the sensors and its ramifications on
the worst-case probability of detection.

Consider the same set of m binary sensors y1, y2, . . . , ym
as the previous section with probabilities of false alarm and
detection. However, for the rest of the paper, the measure-
ments from each of the sensors will not be considered to be
independent.

It is safe to assume that the correlation coefficient between
the sensors is constant, irrespective of the state of the system
(X). In the cases where this assumption isn’t true, the
correlation of the sensor measurements could be considered
separately when X = 1 and X = 0. Since the derivations
are similar, for cleanliness of notation during the rest of the
section, the value of the state X will not be specified. The
probabilities will instead be denoted as

P (yi = 1) = pi, (17)

P (yi = 0) = 1− pi, (18)

i = 1, 2, . . . ,m.

with the understanding that, if X = 1, pi = βi and if X = 0,
pi = αi for all i = 1, 2, . . . ,m.

Now, since the assumption is that the probabilities pi need
not be independent, for some 1 ≤ i1 < i2 ≤ m, E [yi1yi2 ] ̸=
E [yi1 ]E [yi2 ]. In fact, since more than two variables can be
interdependent, for some 1 ≤ i1 < i2 < . . . < ik ≤ m,
1 < k ≤ m,

E [yi1yi2 . . . yik ] ̸= E [yi1 ]E [yi2 ] . . . E [yik ] . (19)

The correlation coefficient rij is defined as

rij =
E [yiyj ]E [(1− yi) (1− yj)]

√

E [yi]E [1− yi]E [yj ]E [1− yj]

−
E [yi (1− yj)]E [(1− yi) yj]

√

E [yi]E [1− yi]E [yj ]E [1− yj]
. (20)

Using E [yi] = pi and simplifying the expectations,

rij =
E [yiyj]− pipj

√

pi (1− pi) pj (1− pj)

= E [wiwj ] , (21)



where

wi =
yi − pi

√

pi (1− pi)
. (22)

Similarly, the higher correlation coefficients can also be
calculated as

ri1i2...ik = E [wi1wi2 . . . wik ] . (23)

As derived by Bahadur [20], the joint probability for a
measurement vector Y = (y1, y2, . . . , ym) can then be
written as

P (y1, y2, . . . , ym) =
m
∏

i=1

pyi

i (1− pi)
1−yi h (y1, y2, . . . , ym) ,

(24)
where

h (y1, y2, . . . , ym) = 1 +
∑

j<k

rjkwjwk

+
∑

j<k<l

rjklwjwkwl + . . .

+ r12...mw1w2 . . . wm. (25)

This is the probability, calculated by substituting α1

and βi for pi, that causes the manifestation of the factor
h (y1, y2, . . . , ym) in the worst-case probability of detection
P of Equation (12):

P = P0

∑

y∈Y0

(

hα (y1, y2, . . . , ym)
m
∏

i=1

αyi

i (1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(

hβ (y1, y2, . . . , ym)
m
∏

i=1

βyi

i (1− βi)
(1−yi)

)

.

(26)

It can be seen that the correlation factor can significantly
affect the worst-case probability of detection, and hence
the solution of the optimization problem. Even when the
solution remains unchanged, the correlations r between the
sensors will increase the worst-case probability of detection,
improving the detector performance.

For m greater than 4 or 5, computing this distribution
can become infeasible. One of the assumptions that are
usually made (Emrich and Piedmonte [21]), is that some
of the higher order correlation coefficients rjkl... are zero.
The problem with this assumption is that since rjkl... need
to satisfy linear inequalities determined by the marginal
expectations, they are not free to vary over [−1, 1]. Thus
by assuming rjkl... are zero, the values of h at some
measurement vectors might be negative.

In the next section we propose a method to overcome this
problem by using a different assumption.

V. CORRELATION ASSUMPTIONS

Zero is as arbitrary a value for the correlation coefficient
as any. In fact, assuming rjkl... are zero could poten-
tially make h (y1, y2, . . . , ym) negative for some values of
y1, y2, . . . , ym. In order to avoid this, we propose that the
correlation coefficient be set in the following roundabout

manner, such that h (y1, y2, . . . , ym) is guaranteed to be non-
negative.

Remark 2: If the problem specifies as many values of
rjkl... as are possible, the remaining values can be made
to be consistent. It is easy to see that if all values of
rjkl... are not specified, the parameter space is incomplete,
and can be filled in many ways. Several methods have
been proposed to generate binary random variables that
have the given correlation values — for example, Emrich
and Piedmonte [21], and Lunn and Davies [22]. A method
that generates random variables of given 2-correlations by
using Poisson processes is proposed by Park et al. [23].
Intuitively, if a large number of random variables of the
given 2-correlations are generated, consistent higher order
correlations can be accrued by calculating the higher order
correlations of these generated samples. The accuracy of the
calculated correlations depends on the size of the sample —
for true values, an infinite sample size would be needed.

The key idea behind the paper is that such a sample
does not need to be generated. If an appropriate method
to generate the samples is chosen, the characteristics the
method can be used to generate the higher-order correlation
values algebraically. The actual calculated value will depend
on the exact generation method used, but this roundabout
manner assures us that any calculated value will be consistent
with the specified values. The quality and characteristics of
the calculated value, then, are equivalent to those of the
generation method used. The comparison of the different
methods is beyond the scope of this paper, however, it can
be assumed that the method that generates samples with
parameters closest to the sensor correlation values will be
better suited for constructing the detector.

A. Example

Consider m = 3 with p1 = 0.9, p2 = 0.8, p3 = 0.7, and
the 2-correlation coefficients are given as r12 = 0.1, r13 =
0.5 and r23 = 0.5. Given the 2-correlations, the generation
method by Park et al. [23] can be chosen.2 Applying the
method, we get

z1 =P1 + P2+P3 (27)

z2 =P1 + P4+P5 (28)

z3 =P1 + P2 + P4 + P6, (29)

where

P1 = Poisson (θ1 = 0.0165) , (30)

P2 = Poisson (θ2 = 0.0870) , (31)

P3 = Poisson (θ3 = 0.0018) , (32)

P4 = Poisson (θ4 = 0.1350) , (33)

P5 = Poisson (θ5 = 0.0716) , (34)

P6 = Poisson (θ6 = 0.1181) , (35)

where Poisson (θ) denotes a Poisson process of intensity θ.

2The values are chosen to match one of the examples used by Park et al.
[23].



The binary random variables y1, y2, and y3 can be
generated from z1, z2, and z3:

yi =

{

1 if zi = 0

0 otherwise.
(36)

This is the prescribed method for generation of the yis.
However, the yis need not be actually generated to calculate
the unspecified coefficients of correlation (in this case, only
r123). Using the definition of r123 from Equation (23),

r123 =
E [y1y2y3]− p1p2p3

√

p1p2p3 (1− p1) (1− p2) (1− p3)

−

√

p1
1− p1

r23 −

√

p2
1− p2

r13 −

√

p3
1− p3

r12

(37)

The value of E [y1y2y3] can be computed given the forms
of y1, y2, and y3. Since y1y2y3 = 1 ⇐⇒ y1 = y2 = y3 = 1
⇐⇒ z1 = z2 = z3 = 0 ⇐⇒ P1 = P2 = . . . = P6 = 0,

E [y1y2y3] =
l
∏

i=1

e−θi . (38)

Performing the computations, E [y1y2y3] = e−0.4300 =
0.6505, giving r123 = 0.0109.

Thus, if these processes were to generate y1, y2, and y3,
then the value of r123 would not be zero. Although assigning
the computed value of 0.0109 to r123 of our sensors is exactly
as arbitrary as assigning 0, the advantage here lies in the fact
that as long as the 2-correlations are consistent, the higher
correlations will also be consistent, enough to guarantee the
non-negativity of h (y1, y2, . . . , ym). All that remains is to
use the higher correlation values to figure out the worst-case
detection probability.

Given r123, it’s easy to compute h for different values of
y1, y2 and y3, which in turn can be used to calculate the
joint probability of each measurement vector P (y1, y2, y3)
of equation (24).

Y
h

Uncorrelated Correlated
y1 y2 y3 Probability Probability
0 0 0 5.3189 0.0060 0.0319
0 0 1 0.0062 0.0140 0.0001
0 1 0 2.7844 0.0240 0.0668
0 1 1 0.0210 0.0560 0.0012
1 0 0 2.2174 0.0540 0.1197
1 0 1 0.3830 0.1260 0.0483
1 1 0 0.3774 0.2160 0.0815
1 1 1 1.2906 0.5040 0.6505

TABLE I

JOINT PROBABILITY FOR MEASUREMENT VECTOR Y = (y1, y2, y3)

Table I shows the calculation of h, and the uncorrelated
and correlated probabilities. It can be seen that the change
caused by h can be as high as a factor of 5. This will translate
to a higher confidence in the sensor readings in the event of
an integrity attack.

VI. SIMULATION

In our example system consisting of only three sensors,
the number of sensors attacked can only be 1, constrain-
ing the sets Y0 and Y1 severely to Y0 = {(0, 0, 0)} and
Y1 = {(1, 1, 1)}, irrespective of the probabilities in question.
Thus, the inclusion of h cannot change the detector. What
does change in our system, however, is the confidence of
the detector. Looking at the correlated and uncorrelated
probabilities in table I, the probability that a measurement
lies in Y0 ∪ Y1 changes from 0.51 (almost half) to 0.6824
(better than 2/3), making the detector more resilient to attacks
that change 1 measurement.

To verify this, N sets of 3 sensor measurements were
generated. An intelligent attacker was assumed, who flips
one sensor measurement if and only if it is going to cause
a change in the detector output. Table II shows the results
of the simulation, under the cases where the sensors are
correlated and uncorrelated.

Sensors N Successful Attacks Correct Detection Rate
Uncorrelated 1000 492 0.5080
Correlated 1000 319 0.6810
Uncorrelated 1000000 489757 0.5102
Correlated 1000000 317574 0.6824

TABLE II

SIMULATION RESULTS

It can be seen from table II that the rate of correct detection
is higher in case of correlated sensors, using a detector that
uses the fact that the sensors are correlated.

VII. ALL SENSORS EQUIVALENT

As was done in the previous work [19] with the case of
uncorrelated sensors, this section focuses on the case where
all sensors are equivalent, and all 2-correlations are the same.

If all sensors and 2-correlations are equivalent,

pi = p, 1 ≤ i ≤ m, (39)

ri,j = r, 1 ≤ i < j ≤ m. (40)

This uses a special case of the method given by Park et
al. [23]. Using the simplification,

zi = P + Pi, (41)

where

P = Poisson (µ) , (42)

Pi = Poisson (ν − µ) , (43)

where µ = log
(

1 + r 1−p
p

)

and ν = − log p. Thus, for 1 ≤

i1, i2, . . . , ik ≤ m, where 1 < k ≤ m, simplifying like the
example in the last section,

E [yi1yi2 . . . yik ] =
p2k−1

(p+ r (1− p))k−1
. (44)



Thus, E [yi1yi2yi3 ] =
p5

(p+r(1−p))2
can be used to generate

the 3-correlations r3 as

r3 =

p5

(p+r(1−p))2
− p3

p3 (1− p)3
− 3r

p

1− p
. (45)

These 3-correlations and E [yi1yi2yi3yi4 ] =
p7

(p+r(1−p))3
can

be further used to compute r4, and so on.

VIII. CONCLUSIONS AND FUTURE WORK

The allowance of correlation among sensors allows for
a more accurate modeling of a physical SCADA system,
where the sensors are connected through measuring the same
physical system, causing their outputs to be non-independent.
This interdependence of the sensor values can be leveraged
to improve the resilience of the detector in the event of an
integrity attack on the system.

The increase in detection rate by considering the effects
of correlation will boost the security of distributed sensor
networks that employ binary variables. Future work will
involve simulating or implementing such a SCADA system
in order to demonstrate the effectiveness of the detector, and
possibly implementing these methodologies on a simulation
or implementation of a power grid. Future work will also
involve reducing the search space for two classes of detectors
to make higher number of sensors tractable, and extending
the results to sensors with integer outputs instead of binary
outputs.
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